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A new computing technique is described for the solution of fluid flow problems 
in which several fields interpenetrate and interact with each other. An implicit coupling 
for each field between mass transport and equation of state allows for calculations 
in all Aow-speed regimes, from far subsonic (incompressible) to far supersonic. In 
addition, the momentum transport between fields is implicit, allowing for all degrees of 
coupling, from very loose to completely tied together. Phase transitions permit inter- 
change of mass, momentum and energy between fields, each of which is composed of 
several components. Considerable generality is present, to permit application to a wide 
scope of complicated problems, for example, the fluidized dust bed, the flow of a liquid 
with entrained bubbles, and atmospheric condensation with the fall of precipitation. 

The presence of bubbles, droplets or chunks in a fluid introduces the potentiality 
for relative motion, and accordingly requires more than one set of field variables 
for specification of the dynamics. Examples of such circumstances are given by: 

(1). cavitating or flashing flow, in which bubbles are formed of vapor of 
the fluid itself, 

(2). the fluidized dust bed, in which liquid or vapor rises through a bed of 
solid grains; 

(3). precipitation with snow, hail or rain falling through the atmosphere; 

(4). jet entrainment, in which immiscible or mutually diffusing liquid droplets 
are carried and mixed with another liquid. 

In each case, there is relative motion between the two fields, together with the 
interchange of momentum and possibly heat. In many cases there also is an 
exchange of mass through phase transitions or the effects of bum or other chemical 
reactions, as for example, in the burning of granules of gunpowder. 

* This work was performed under the auspices of the US Atomic Energy Commission. 
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The coupled differential equations for such processes have been formulated 
by various authors for a variety of circumstances, but the techniques for their 
efficient and accurate solution have scarcely developed beyond applicability to 
the most simplified problems. Our purpose is to show how the differential equations 
can be implicitly coupled in a finite-difference representation that is highly versatile 
for the solution of time-varying problems in several space dimensions. We refer 
to this new technique as an implicit, multifield (IMF) solution method. Among its 
properties are the following: 

(1). implicit treatments of mass convection and equation of state, so that 
flow speeds can range from far subsonic (incompressible) to supersonic; 

(2). implicit coupling among the fields, to allow forces that range from very 
weak to those strong enough to completely tie the fields together; 

(3). energy equations that allow for heat production from condensation, 
nuclear reactions, exothermic chemistry, etc.; 

(4). interchange of materials from one field to another, for example, through 
phase transitions; 

(5). the allowance for inhomogeneity in the composition and other material 
properties of the field; 

(6). the capability for pile up of a particulate field into a close-packed 
region with variable boundary position; 

(7). a representation of material strength, so that a porous field may resist 
deformation until softened by heating or yielding under excessive strain; 

(8). a transport equation for particulate, droplet or bubble scale, representing 
such processes as fragmentation, coalescence and expansion or contraction. 

The basic numerical procedure is an extension of the implicit, continuous- 
fluid, Eulerian (ICE) technique [I], which allows for fluid dynamics studies at all 
flow speeds. Although the technique has been applied to generalized Eulerian- 
Lagrangian representations [2], the present multiphase flow version is restricted 
to a purely Eulerian mesh of computational cells. A Lagrangian mesh in the usual 
sense cannot be uniquely defined because of the separate and distinct fields of 
material velocity. We illustrate the technique with a two-field version in cylindrical 
coordinates with azimuthal symmetry. For brevity, the interactions between fields 
are here described by relatively simple expressions. Such simplifications are easily 
removed, however, as discussed in the text and illustrated by some of the test 
problems that have been solved with the technique. 
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THE DIFFERENTIAL EQUATIONS 

Numerous publications have described the equations necessary for multifield 
flow, usually under the headings “two-phase flow” and “fluidization.” A surprising 
amount of disagreement exists on the proper representation by continuum 
equations of the dynamics of such a system, especially concerning the proper 
coupling between the two fields. The form we use is based on elements derived from 
Murray [3], Soo [4], Nigmatulin [5], Anderson and Jackson [6], Kalinin [7], and 
Mecredy and Hamilton [8]. We designate the two fields as “vapor” and “droplets,” 
the former a gas in bubble form or with dispersed droplets in it, the latter a fluid 
or aggregate of solid particles. Subscripts referring to the vapor and droplet fields 
are, respectively, u and d; within each field we allow for two components, designated 
by subscripts 1 and 2. The nomenclature employed for the field variables is, in part, 
the following: 

u = velocity, with components u and u in the cylindrical-coordinate 
directions r and z, respectively, 

p = material density, the actual microscopic mass per unit volume of a 
particular material, 

p’ = macroscopic material density, the mass of material per unit total 
volume, including the volume occupied by material of the other 
field; p’ = pl’ + p2’, 

p = pressure, assumed to be locally in equilibrium between the two fields, 
and directly related to the equation of state of the vapor when the 
droplet field is disperse, or to the maintenance of incompressibility 
when the droplet field is close packed, 

I, T = specific internal energy and temperature, neither of which is likely 
to be in local equilibrium between the two fields; I and T are related 
through a specific heat function, 

~9 = the volume per unit total volume available to the vapor; i.e., porosity 
or void fraction, 

c = local sound speed, 

S me , S,, = mass per unit time per unit volume evaporating or condensing, 
and therefore interchanging between fields, 

&, , Si, = sources to internal energy from evaporation and condensation, 
including latent heat release or absorption, so that both might have 
positive and negative contributions, 

K = drag function, related to the exchange of momentum between fields, 
R = exchange function describing the transfer of heat between fields, 
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E = heat source, from chemical or nuclear processes, 

V = momentum density source from viscous effects, 

Vz = source to internal energy density from viscous dissipation, 

rD = radius of particle, droplet or bubble, 

S, = rate of growth of particle, droplet or bubble scale, 

M = the total Mach number for the vapor motion, 

D = discrepancy in mass conservation, 

/t? = @D/+)-l. 

In addition to the field variables, we utilize the following nomenclature: 

g = acceleration of gravity, 

k = heat conduction coefficient, 

v = kinematic viscosity coefficient, 

CD = drag coefficient, 

St = time increment per calculation cycle, 

6r, 6z = cross-section dimensions of finite-difference cells, 

w  = relaxation parameter for iterative solution, 

aO, so = constants denoting proportions of donor-cell convective fluxing. 

Thus, we can write for the density transport equations, 

P 
I-.- v- OP, 9 

Pd ’ = (1 - e> pa, 

(aP;llat> + v  . kJ:,hJ = Ll - &c, , 

mw) + v  . ad = smol - smel , 

ww) + v  + (~;d = he2 - smcz , 

(afdw + v  - b-cd = smoz - smez . 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Interdiffusion of the component materials in each field has been neglected, but 
could be included by adding the divergence of a difksional flux. For the vapor, 
the distinction between the two components enters the analysis principally as a 
means for properly calculating the pressure, which requires an equation of state 
for a mixture of varying proportions. For the droplet field, microscopic incom- 
pressibility allows us to write 

6 = 1 - k&/P3 - @&lPz), (7) 
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in which p1 and pz are the normal material densities of the two components. In 
some circumstances, it will be important to allow p1 and pz to vary with temperature, 
which will permit natural convection in regions where the droplets have coalesced 
into a continuous fluid. 

Next, the momentum equations can be written: 

atphb)lat + v - c+b~,) = udsme - u,smc - evp + v, + pig 

+ K(Ud - u,), (8) 

a(Pdwat + v - (pb~) = u,s,, - udsme - (1 - e) VP + vcl + pig 

+ K(u, - WJ. (9) 

Note that the factors 0 and 1 - f3 lie outside the pressure gradients. If these were 
within the gradients as some authors have proposed, then the equations could 
not represent static equilibrium for an inhomogeneous distribution in the absence 
of gravity. The way in which the drag function K is introduced is specifically for 
the purpose of the numerical solution technique, which requires a linearized 
implicit coupling between fields. It is important to emphasize, however, that this 
does not require a linear physical coupling between fields, only a linear implicitness. 
The K function itself can vary with velocity, and the numerical solution technique 
can also include the various virtual mass effects and other extensions that are 
necessary for accurate representation of the dynamics. These matters are discussed 
further in the next section. 

Also, we have the energy equations, which are written in the following form: 

p,‘KWW + V * W,) - IvV . u,l = &,, - Sic, + E, + NT, - TtJ 
-t K(UI - Id2 -t v . (k&%) $ vi, - Pv . [8Uv -k (1 - 8) IId], (10) 

P;[(azd/at) + v . (udzd) - I8 . 14 = Sicd - Sied + Ed + WV - G) 

+ v - [k,(l - e) VT,I + 6,. (11) 

The heat exchange function R is thus defined as the appropriate variable coefficient 
by which to multiply the local temperature difference. The effects of drag dissipation 
have been assigned completely to the heating of the vapor, as also have the work 
terms arising from both vapor compression and the energy associated with droplet 
acceleration. The heat-conduction coefficients depend sensitively on 8, with kd 
being appreciable only when 0 is small (i.e., the droplets are closely packed) and 
k, being appreciable only when 0 nears unity and the vapor region is fairly con- 
tinuous and well connected. The source terms from phase transitions are not equal 
and opposite in their effects, because of the release or absorption of latent heat, 
burn energy and similar sources. 
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A variety of equivalent formulations exist for the energy equations, some 
involving the enthalpy as a field variable, and some being in rigorously conservative 
form. While these alternatives may have some advantages, our present version 
is based on ease, numerical stability, accuracy, and efficiency considerations in the 
numerical solution of the equations. 

THE EXCHANGE FUNCTIONS 

The two fields are coupled togather through interchanges of mass, momentum 
and energy, as described by several exchange functions. Such processes as phase 
transitions or droplet burn affect all three of the conserved quantities, while others 
such as heat conduction or drag affect only one or two. 

Consider first the interchange of mass, as described by the various S functions. 
For single-component fields, such as pure water droplets in pure steam, the 
representation of evaporation and condensation is described by rate functions that 
depend only on temperature and pressure. Momentum and energy interchange 
carry the specific quantities of the donor field in proportion to the interchange 
rate for mass, whereas theenergyreceives anadded effect through momentum mixing 
and the release or absorption of latent heat. For double-component fields, such 
as a mixture of air and water vapor in one and water droplets with particulate 
nuclei in the other, the interchange rate also depends crucially on the proportions 
of the two components for each field, which in turn are modified by unequal 
depletion or addition rates. A detailed discussion of these complications is beyond 
the scope of the present paper, in which our principal emphasis is on the description 
of the solution technique. A goal in the development of this technique, however, 
has been to include mass interchange among multicomponent fields, so that a later 
section has been included to show how the basic techniques can be extended to 
include this capability. 

A second interchange is that of momentum, which can occur through two 
mechanisms. One takes place even in the absence of relative motion between the 
fields. It results from gradients of pressure, which accelerate the droplets at a 
different rate from the corresponding acceleration of the vapor. The other 
momentum exchange can take place even in the absence of pressure gradients, 
that is, in the absence of macroscopic gradients of the variable we call pressure, 
which does not include the actual microscopic pressure fluctuations around an 
individual particle. The first of these mechanisms has sometimes been represented 
with the porosity function 0 inside of the gradient operator, but that erroneous 
form has no basis in physical reality. The second is described in our equations by 
terms of the form 
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The simplest expression for K, roughly valid for an isolated spherical particle 
in fairly uniform translation through the vapor, is 

K = [3p,‘(l - 6)/2rP20](3v, + rJ, j u, - ud j/4). (12) 

As discussed by Soo [4] there is also a “force to accelerate the apparent mass of 
the particle relative to the fluid,” and one that “takes into account the effect of 
the deviation in the flow pattern from steady state.” The expressions for these 
effects involve a time derivative of the relative velocity and an integral of the time 
derivative. These effects and various other corrections have also been discussed by 
Corrsin and Lumley [9] for turbulent fluids, but much more research will be 
required before the effects of turbulence in two-phase momentum transfer can be 
accurately described in general. A related topic still requiring much investigation 
occurs when the droplets are deformable, or similarly when bubbles embedded in 
a liquid are subject to severe deformation during the time-varying dynamics. 
For this latter case, Eq. (12) must be modified even in the absence of deformation, 
since it is the droplet field that resists vapor motion, rather than vice versa. 

All of these difficulties are severely compounded when the bubbles or droplets 
are close enough together for interactive effects. In that case, even the simplest 
expressions without the above-mentioned corrections require modification. A 
limiting case is that of the flow of liquid through a porous medium, in which case 
the Darcy drag formula introduces the concept of a permeability that varies 
strongly with porosity. Soo [4] discusses some representations of the effects in 
the vicinity of this limit. A very crude approximation to this can be given through 
the inclusion of an extra factor of 6 in the denominator of Eq. (12): 

K = [3p,‘(l - O)/2r,282](3~, + r,CD / u, - ud l/4). 

This form is sufficient to illustrate our numerical solution technique, since any 
extensions or corrections introduce no further complications. For example, those 
modifications to fK(u, - u,) that are not proportional to differences in the two 
velocities can be treated purely explicitly and therefore included in trivial fashion 
along with the explicitly calculated effects of gravity; whereas, those that are 
proportional to velocity differences simply modify the variations of K itself, the 
form of which can be as general as desired in the numerical procedure. 

A topic related to the interchange of momentum is that of the particulate, droplet, 
or bubble scale of size. Equation (13) shows that the drag function depends strongly 
on this scale, but the dynamics are otherwise not very sensitive to scale variations 
provided that the size is small compared with the macroscopic geometric features 
of the system. As long as there is not a localized spread in the distribution of scale, 
the particulate, droplet, or bubble phase can be treated as a single field. In many 
circumstances of interest, however, there is a spread to this distribution; that is, 
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within any small volume there are many different scales for the subdivided phase. 
An important consequence of this is the resulting spread in velocities, which no 
longer admits to description by a single field, requiring instead appropriate distri- 
bution functions for the field variables, analogous to the Maxwell-Boltzmann 
distribution for molecular velocities in a gas, but not of so universal a form. 

The case of no local spread of scale distribution is easily handled in our present 
formulation, at least in principle, even if there is considerable variation of scale 
itself as a function of position and time. All that is required is an appropriate 
transport equation, which can be written in the form 

(a&p) + ud . vr, = s9 , (14) 

in which S, describes the rate of scale change resulting from such processes as 
condensation or evaporation, or possibly from coalescence or fragmentation, 
although these last tend to spread the distribution of local scale. 

One type of coalescence, however, is amenable to treatment by means of a 
relatively simple extension to our two-field model. In this case, coalescence results 
in a region of one pure phase with geometrical configuration that is large enough 
to be resolved numerically in detail. Droplets falling through a vapor, for example, 
may coalesce into a puddle of progressively increasing depth in the bottom of a 
vessel, or bubbles rising through water may form into a continuously enlarging 
vapor pocket above the fluid. The technique for including this sort of process is 
an important extension to the basic methodology and is described in a later section. 

In the energy equations, there is yet another exchange function R defined in such 
a way that 

represents the heat energy transferred per unit volume per unit time between the 
two fields, as a result of conduction through the exposed surface between them. 
The details of the process can be quite complicated, especially in the presence of 
relative motion. For particles in a liquid, the conduction rate depends on the degree 
of wetting. Three regimes can occur, complete wetting, sporadic wetting, and no 
wetting. In this last, there is a thin skin of vapor surrounding the particle, which 
must be very hot in order to sustain the skin, especially when the relative motion 
is great. Sporadic wetting occurs when the particle is cooler and liquid can 
occasionally contact its surface, with much resulting agitation of the particle 
and turbulence in the fluid. 

Thus, the formulation of an expression for R is not simple, although various 
forms have been proposed for special cases. For simple conduction through a 
layer of effective thickness that is some fraction h of the particle radius and described 
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by an effective heat conduction coefficient kdu , R can be estimated by the expression 

R = 3k,,(l - 6’)/h,“. (15) 

More accurate and extensive exchange functions have been discussed by Soo [4], 
Mecredy and Hamilton [8], Nigmatulin [5], Kalinin [7], and others. From the 
viewpoint of our numerical solution technique, the incorporation of any 
appropriate form introduces no significant complications, so that no further 
discussion of heat exchange is required at this point. 

NUMERICAL PROCEDURE 

Numerical solutions with a high-speed computer require a means for representing 
the fields, and a way to calculate changes in the fields through time from a pre- 
scribed set of initial conditions, subject to appropriate boundary conditions. To 
accomplish the representation, we utilize a completely Eulerian mesh of finite- 
difference cells. In cylindrical coordinates these cells are toroids about the axis, 
rectangular in cross section and with dimensions 6r and 6.~. Field variables such as 
p, p and I are cell-centered quantities, whereas velocities are located on the sides 
of cells, as shown in Fig. 1. Integer indices i and j count cell centers in the r and z 
directions, respectively, whereas half integer indices refer to the cell-edge positions. 

To illustrate the methodology, we first omit the exchange of mass between 
fields, and also assume that there are no macroscopic regions of incompressibility 
(close-packed droplets). Extensions to include these features will be described 
in the following section. 

Development of the field configurations through time takes place in a sequence 
of cycles, or time steps, each of duration 6t. The steps in each cycle are accomplished 

i-4 i++ 

FIG. 1. Layout of field variables and indices for a computational cell. 
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in such a way as to utilize the results developed in the previous cycle (or the initial 
conditions) for the calculation of new values of all field variables at a time 6t later, 
and to store these in the computer in such a way that they can be processed yet 
again in the following cycle. 

Calculation of the convective flux of a quantity introduces nomenclature for a 
partial donor-cell technique, which assists in giving an automatic mitigation of 
truncation-error effects [lo] without the necessity for an explicit artificial diffusion, 
Angular brackets denote such a donor-cell flux, as exemplified by the following 
expression for some quantity Q. 

@Q>:+,,, = u:+I& + 0 Qij + G - 0 Q:+,l, (16) 

where 6 is controlled by the specified parameters, a0 and /3,, , 

5 E ~ou~+l,2 St/h + 01~ sign(ui+,,,). (17) 

The value of 01~ lies between zero (no regular donor cell treatment) and 0.5 (full 
regular donor cell treatment), and /I0 lies between zero (no interpolated donor 
cell treatment) and 0.5 (fully interpolated donor cell treatment). For 01~ = PO = 0, 
the flux is purely space centered, which leads to numerical instability in the absence 
of a mitigating diffusive process. 

The first half of a calculation cycle performs the explicit time advancement of 
those quantities that do not need to be determined in the implicit iteration loop. 

For the components of the droplet field, the transport equations for density can 
be written in a finite-difference form that ensures the rigorous conservation of mass 
for each of the two components. Thus, Eqs. (4) and (6) become 

+ (st/sz)[(u,p&):-1’2 - (vdp~1>:+1’2], (18) 

““~~2>~ = “(P~~>~ + (Wri 6r)[(u,rpi&,,, - (~~rp;~):+~,~] 

+ (st/sz)[(v,~,>:-“” - <v,p;2);+1’2]. (1% 

The superscripts YE and n + 1 count the cycle numbers; wherever the superscript 
is omitted the implication is cycle number II. 

With these updated densities for the droplet field, Eq. (7) becomes 

n+qlij = 1 - ““(j&)Qpl - n+l&2):/p2 . (20) 
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In a slightly different form, the equation for one component of the vapor density 
can be written 

Q,j = [n+l(p;l)f - Ypil):l/St + (llrd ~r)[“%arp~l)~+1~2 - ““Gv&>~-1~21 

+ (l/sz)[“+l(~,p;l):“‘~ - ““(c,p:J-““I = 0, (21) 

which differs from Eq. (18) in the advanced-time level of densities and velocities 
throughout the divergence term. Thus, the equation cannot be solved at this stage 
of the cycle, but must be deferred until after the determination of advanced-time 
velocities. An equation for the second component of the vapor field is not used, 
being replaced by an equation for the sum of the two vapor densities, which is 
required for implicit coupling with the momentum equation as described below. 

A consequence of having transport equations for each material component 
is the potentiality for fictitious numerical diffusion of one component into another. 
To preclude this undesirable effect, one could introduce a Lagrangian set of marker 
particles for each component, which follow the trajectories of individual fluid 
elements. Indeed, we use such particles anyway for the purpose of visualizing 
the changing configuration of materials, as illustrated in some of our test-cal- 
culation results shown below. Their influence on the calculation would be such as 
to zero the convective flux of a component into a cell with no marker particles of 
that component, and to flux all the material of that component from a cell with 
no marker particles into an appropriate adjacent one with marker particles. 

For the internal energy equations we write 

““(Iv): = “(ZJ: 11 + --$ [(ruv):+,,, - (ru,)?-,,,I + $J [(21&+“~ - (z&“~][ 
z 

- +& Ku,rL)~+l~2 
St 

- (u,rZ,):-,,2] - - [(v,Z,)~+~‘~ - (zI,Z,):-~‘~] 
t 6Z 

+ (fly,: - &qa: - (ml + &w4zx - <~vX>” + ((%X - <%>:>“I 1 

+ $ K~rX+1~2 ((TJZ+l - (TV):) - WL2 <<Td - (~,)i-dl 2 

+ & [e:+1’2((Tv):+1 - (7-J:) - e:-““((T,>: - (T&-l)] + (E,)11 

- f$$ j$g [Ed, + (1 - e) ~~lij+~,~ - 3 [eu, + (1 - e) udl:-l,2 
2) z 2 

+ t [eu, + (1 - e) udp2 - k [eu, + (1 - e) ydl::-1/21, (22) 
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n+l(IJ: = y&): 11 + -$ [(r&&+1,2 - (ru&,,,] + ; [(Ud):+1’2 - (z&$“‘l~ 

- & Kw%X+1~2 
St 

- <u,rId)~-,12] - - [(ud1d)~+1’2 - (zJJ&~‘~] 
* &z 

x ((TdX+l - (TdX) - rf-1,2U - &A2WdX - (~d>L>l 

+ & [(l - e:+l’q((T&:+l - (T&) - (1 - e:-““)((T,); - (r,)i-l)]/. 

(23) 
The time level for Kii in this and subsequent parts of the calculation is not of 
crucial importance; indeed the factors entering into the Kj calculation can be 
mixed in their time levels, with 8,j, for example, entering at the n + 1 level, but the 
velocity components at the n level. 

These finite-difference equations presented so far are in a form that has been 
demonstrated to work very well in a variety of test problems. Several alternatives 
exist, especially in the formulation of the convective fluxes. Experience shows that 
there are several useful guidelines in the choice of these, one being the requirement 
for the same donor-cell proportions in the fluxes of mass and energy to avoid the 
tendency to develop inconsistencies in regions where the pressure should remain 
uniform but mass and energy densities have strong opposing gradients. Another 
guideline is the utility of convecting specific internal energy, rather than internal 
energy density, which enables the temperature of an element of material to convect 
with the material, unless otherwise influenced. Our formulations of the internal 
energy equations do not ensure the rigorous finite-difference conservation of total 
energy. The alternative (conservative) technique of deriving changes in internal 
energy from the difference between changes in total and kinetic energies is highly 
perilous in both very low-speed flows and highly supersonic flows, being notorious 
for the inducement of large temperature fluctuations in both extremes. 

Despite the importance of correct formulations for these explicit parts of the 
calculation, they are by no means the crux of our new methodology. The principal 
numerical problems to be resolved are those of the simultaneous implicit transport 
of vapor density and the momentum of both fields. 

To see how the problem arises and can be efficiently resolved, it is convenient to 
first introduce special nomenclature for the explicit parts of the momentum 
equations. For general formulations of the momentum exchange function, the 
following definitions would include, explicitly, those parts not directly proportional 
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to the difference in velocity between the two fields. To illustrate the technique 
with the form in Eq. (13) we define 

@&-5pJ2 z (P;u&+~‘~ + (&jr, i3r)[(p,‘u,v,r)~$ - (pU’u,v,r):$:22] 

+ (JQ”‘” St + (St/Sz)[(p,‘& - (p,‘z&:“] + (pv’):+1’2 g St, 
(25) 

@za+1,2 = @d’~Ji+~1~ + @f/ri+l,2 Sr)Kfd’ud2r)i - <fdlud2rX+ll 

+ (%x+1/2 St + (st/sz)[(f,‘UBVd):;::22 - (fd’wdml, (26) 

(G)z+l’2 s @d’vd):+1’2 + (8t/ri Sr)[(p d’udvdr)~l$~ - (pa’udvdr)~~$ 

+ ( ,,:+1’2 St + (St/Sz)[(,,‘v,‘>i, - (pd’ud2):+l] + @d’)j+1’2 g St. 

(27) 

With these definitions, the equations for total vapor mass and both fields of 
momentum conservation become 

“+lDi E (l/St)[“+‘(p,‘)~ - “(pu’):] + (l/ri Sr)[n+1(pv’u,r)~+l12 - n+1(pV’u,r):-,,2] 

+ (l/sz)[“+1(pV’Uv>~+1’2 - n+l(po’v&“‘“] = 0, (28) 

n+l(& >I 
-. 

a 2+1/2 = (~~'hX+1~2 + “+1e:+l,2(St/Sr)(“+1~,i - “+%+d 

+ K!+1,2 St r+%4J1+1/2 - “+1hJ~+1/21~ (29) 

-. 
n+yp;yv)f+l’2 = (pu$J;+l’” + n+le:+“2(6t/6z)~+lE): - n+lp:+l) 

+ Ki+l12 St [*++J:+1’2 - n+*@&+9 (30) 

- . 
n+1@d’UdX+112 = (pd’ud):+1,2 + (1 - ““8:+,,,)(St/Sr)(“+l~ii - “+lpi+l) 

+ K:+1,2[n+1(~,):+1,2 - n+1(4&+1,21, (30 

n+l(f;Ud)~l/2 = @x){+1’2 + (1 - “+le:+1’2)(st/sZ)(n+l~ij - ““lp~“) 

+ @/2[n+1(4+1/2 _ n+1(Uti):+1/2]a (32) 

581/17/I-3 
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The essence of our new methodology lies in the implicitness expressed in these 
equations, and in the procedure by which these simultaneously coupled equations 
can be solved for the various 12 + 1 level variables appearing throughout. Through- 
out the procedure, the proportions of the two vapor components are assumed to 
remain constant, any requirement for their separate values (e.g., in the equation 
of state) being satisfied by the n time proportions times the unknown total vapor 
density. Note that the values of “+lpd’ have been determined explicitly, so that n+10 
is now also known, and the six unknown quantities to be determined are n+lpv’, 
n+1 uv 7 n+1 

vu 2 
nt1 

43 7 
n+1 vd , and %+lp. The five equations above, plus the equation 

of state for the vapor, p = p(p, , I,), thus make the system exactly determinate, 
at least in principle. In practice, the solution procedure is moderately complicated, 
and accordingly is described in some detail. The technique involves an iteration 
procedure, and we have found the following version to be highly flexible, yet 
efficient and convenient. 

During the iteration, the various field variables accumulate to their final values 
for the cycle in a series of iterative sweeps during which neither n nor n + I serves 
as an appropriate designation. Thus, for these intermediate values we use an over 
tilde, as for example, $j. The first step is an initialization for the six tilde quantities. 
The simplest one is (&‘): = “(p,‘): . Experience has shown that pressure initiali- 
zation should be accomplished in either of two ways, depending on the magnitude 
of the local Mach number M. 

As Mii -+ 0, initialize (j): = “(p){ . 

For MJ 2 0.1, initialize (j): = p[“(p& ,la (I&]. 

The distinction is essentially that as Mij - 0, the manifestations of internal energy 
fluctuations should not be included in the pressure initialization, the value simply 
being the result obtained the previous cycle from the iteration convergence, with 
the equation of state being bypassed at this point. It should be observed, however, 
that the equation of state is not at all ignored in the vicinity of this limit, but enters 
crucially into the relationship between changes of density and changes of pressure 
each step in the iteration. At the limit, Mij = 0, the effect is to make all changes 
in microscopic vapor density vanish, as in fact is completely appropriate for 
incompressible flow, and only at this extreme does the equation of state completely 
drop out, with the calculation becoming SMAC-like [l 11. In general, we initialize 
the pressure as 

<s>: = .c “(PX + (1 - fij) p[“(pJ: ,n <z&, (33) 

where fti is a function of Mii that equals unity for Mij = 0, and decreases mono- 
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tonically to zero as Mi’ increases. We have found empirically that a useful form is 

f = [I + lo(M~j/M0)4]-l, (34) 

in which M,, = 0.5. The sound speed c we have used in calculating the local Mach 
number, is modified from the adiabatic sound speed in the vapor, c, , 

c = w>KPd’/Pv’> + l)-l’z, (35) 

which is the theoretical sound speed in the limit K + cc. Even if K is not large, 
this procedure for initialization of the pressure gives good results for all cases we 
have tested, but one may wish to examine alternative formulations for f in other 
circumstances. 

To complete the initialization, we use the initial densities and pressure in 
Eqs. (29)-(32), which now become 

= Gz)~+1,2 + ““0~+,,,(8t/&)(~,i - $+J, (36) 

[@";);+1/2 + ,;+l/2,,](fjv);+1/2 _ K:+l12 St @,):+1/2 

= (pvry,);+l’a + ~+qg;+““(&/&)(jj,i - p:+>, (37) 

I.n+1h’)?;+1,2 + K!+l,z W(&)i+,,2 - &+1,2 St (%):+1,2 

= (&):+1,2 + (1 - ““O:+,,,)(St/8r)(j~ - &+3, (38) 

[n+1(pdr)i+l'2 + K~+l'2&](5&+1/2 _ K;+1'2 St (9;+1/2 

= (px);+l’2 + (1 - n+qp)(stjsz)(p; - &+I). (39) 

These must be solved algebraically in pairs for the two components of the velocity 
in each of the two fields, u”, , 6, , Cd, 6, . 

Following the initialization, the next step is to derive appropriate equations for 
the increment to each of the unknown field variables to be added each sweep of the 
iteration. In previously described techniques such as YAQUI [2], the advancement of 
the unknown field variables during the iteration is completely incremental. In 
our present two-field study, this also is possible, but a side effect is the dependence 
of momentum conservation on the degree of convergence. An alternative procedure, 
illustrated here, removes this defect. We have tried both in our proof-test studies, 
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and find negligible difference in the results, so that the choice becomes a matter 
of convenience and efficiency, which we are not prepared to compare in general 
for the two techniques. 

The nature of this alternative pair of solution techniques becomes apparent 
when we calculate from Eqs. (29)-(32) the difference in iteration-level values for 
the variables. Consider, for example, 

s(pv’u”v) FE (P”v’z7~)new - (p”,‘U”,)O~d, 

where new and old refer to the newly updated iteration level and the previous 
iteration level, respectively. Except for the effect of implicit drag coupling, these 
product functions need not be split, and the direct incremental technique of YAQUI 
is the natural choice. Here, however, the split cannot be avoided, the increments 
of p and u enter the equations separately. An identity such as 

S&‘&J = $[(p”v’)““w + (p”v’)oldJ a + mJnew + o.&I)“‘dl q%’ 

renders the equations intractable, and must be replaced by the approximation 

S(jT~‘u”J M &‘)O’d sii, + (fi,)“‘d &TV 

in order to proceed with a completely incremental approach. Since the definition 
and its approximation become the same in the limit of convergence, the two 
methods produce identical results if the convergence criterion is sufficiently fine. 
For many purposes, however, tight convergence is not required, so that the 
slightly longer formulation required for the partially incremental procedure may 
be counterbalanced by its potentially greater accuracy with fewer iterations. 

In both procedures, the first step is to calculate the increment of j5 for every 
computational cell. For this we use the Newton-Raphson method for finding the 
zeros of Dii, as defined in Eq. (28) in which every n + 1 value has been replaced 
by a tilde value. Then, 

q,j = --wpiiLji, (40) 

in which w  is a parameter whose slight variations above or below unity accomplish 
over or under relaxation. (Convergence requirements impose limitations on o that 
depend on the manner in which the variables are calculated when passing through 
the mesh of cells.) The field variable /$j is defined as 

/3$ = (alp/ajy)-? (41) 

Iterative accumulation of changes in the pressure and other field variables 
continues until Bii is sufficiently small, at which time the changes in pressure 
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according to Eq. (40) are no longer appreciable and the tilde quantities have 
converged to their final values for the cycle. During the iteration, the internal 
energy remains constant, so that changes in pressure and vapor density are related 
by 

(pu’): = jyei$,, + (1 - f,i)$$A,j (42) 

in which pa,, is a specified density for the incompressible limit (fii ---f 1.0) and 

can be calculated from the equation of state. This same pressure derivative also 
occurs in the derivation of an appropriate algebraic form for /3j. To accomplish 
this derivation, it is considerably more convenient to differentiate a slightly 
different expression for bj, namely the form obtained when the mass convection 
is derived from a strictly centered differencing, with no proportions of donor-cell 
fluxing. Because the converged solution is independent of /3j, it is entirely acceptable 
to use any desired set of values for this coefficient, provided that the resulting 
convergence rate is not adversely affected. In many cases, it is sufficient to calculate 
the values only at the start of the iteration, and keep them fixed throughout the 
cycle at those initial values. This same arbitrariness does not, however, apply to 
the specification of d,j as used in Eq. (40); for it the form must be exactly as 
specified in Eq. (28). 

With centered convective flux terms in the dl equation, the necessary derivative 
is calculated as 

+ ri+1,2Kj+1,2 -$j E@d)~+1~2 - w:+1,21 

- ri-1,2Ki3-1,2 & KJdL2 - wL21~ 

_ I&l'2 
s & [(qp'f - (ev)y2]\. 

To complete the derivation requires the velocity derivatives, obtained through 
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the differentiation of Eqs. (29)-(32), making sure to include the dependence of 
&‘)i on @ through the equation of state. The results of the simultaneous algebraic 
solution of these equations gives the required pieces for Eq. (44): 

(p”e’X+1/2 (1 - 
= 

n+lg;+l,2)g _ n+l@dl):+l,2 ( -9:g+:/2 at _ (Q$2) 

w:+1,2 p+Y.pd'):+1,2 + at q+,,,1 + 22 n+1@d’):+1,2 $+I,, 

(44a) 

g-J K&):-l,2 - <%x-ml 

@u’)5-l/2 (1 - n+le~-l,2) g _ n+l(pdt):-l,2 ( -+39\;,2 *t + wvx;/2) 

=--- 

(Pv’):-1,2 [n+1(P;x4,2 + at &,,I + at n+1@;):-l,2 K:-,,, 
(44b; 

& [(q$l’2 - (5&+1’2] 

ZZ 
’ 

(44c) 

@“J-1/2 (1 - 

=--- 
(pv7j-1/2 [n+yPd’);--l/2 + & K;-l/2] + & n+l@;):-1/2 K;-l12 ’ 

(444 

Notice that the second and fourth of these are not obtained merely by index changes 
from the first and third. Equation (44) in all its parts specifies the calculation of 
/?( for use in Eq. (40), with the result that 6j5C is obtainable for every calculation 
cell and the values of (&‘)i can be advanced with Eq. (42). All that remains for the 
iteration sweep is to advance the four velocity values. 

The differentiation that was required for Eqs. (44a)-(44d) is directly applicable 
for the derivation of the purely incremental procedure for advancing the velocity 
values. As discussed above, however, we illustrate the alternative derivation for 
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a partially incremental procedure. For this purpose, Eqs. (29)-(32) are differenced 
(between two iteration sweeps) in the form 

"+1(~J:+1/2 &):+l,z - K:+1,2 St WJ:+l,2 - (J&+1,21 = Q:+l,, 3 

n+1(P;):+1/2(Q;+1/2 _ K{+1/2 & [(Q:+1/2 _ (3:+1/2] = j7;+1/2, 

in which all the unknown new velocities are isolated on the left side, together with 
the (already determined) new values of jV and other known quantities. On the right 
are shorthand expressions involving known tilde quantities from the previous 
sweep and the known new values for @:ij, 

i?:,,,, = (p”,,‘J,);+,,,, + St K;+l,2(zi, - zQ;+,,, + [St (Q&j - S&+,)/Sr] R+10:+1,2, 

TT:,,,, = n+1(~dl):+1/2 &):+1,2 - St Ki+1,2(& - u"di+u2 

+ [St (Sj&j - S~~+,)/Sr](l - *+1e:+1,2), 

s:+li2 = &fQf+l’2 + St K;+1’2(& - q{+1’2 + [St (Fjjj - @:+1)/&]“+1g+1’2, 

P2 = n+l(pdr){+1/2 (5&+1/2 _ St K;+1/2(v", _ Q:+1/2 

+ [St (Sjg - S&“/Sz](l - ““e;+1’2). 

These can be solved as follows: 

(22 )’ n+1(~d1+1,2 a:,,,, + St Ki+1/2(R:+1,2 + 0:+1,2) 

’ 2+1’2 = (p”v’)~+l,2 [n+1(pd’);+l,2 + St K;,,,,] + St “+1(p;);+l,2 K;+l,2 ’ (45) 

(u"&+1,2 = (Pu');+,,, i7':+1,2 + St K!+1,2@+1,2 + 8:+1,2) 

(P,')& P+%Jf+l,z + St K:+,,,l + St "+Y~~'):+1,2 K;+l,, ’ (46) 

n+1(Pdt);+1/2 3:+1/2 + St K;+1/2($+1/2 + ,,,+1,2) 

(p",'>:+l'2 [n+1(p,')f+1/2 + St K;+1/2] + St n+1(&');+1/2 K;+1/2 ' (47) 

&7:+1/2 ,?1/2 + St K;+1/2@+1/2 + ,!+1/2> 

(p",')j+l'" [n+l(Pd'):+l/2 + St Ki+l/Z] + St n+l(p,')d+l/2 K;+l/Z ' (48) 

in which the most updated values of &,’ are to be used. 
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When this iterative solution has been completed we may now solve for the one 
remaining unknown field variable pL1 , as described by Eq. (21). Again, we employ 
a simple Newton-Raphson method for finding the zeros of the equation set, 
Qii = 0. The values of (&)i are initialized at n(phl)i , and gradually accumulate 
to their II + 1 time values by increments 

in which cij, like w, is an over-under relaxation parameter with value near unity, 
and 

(l/p:) = (l/at) + (1/2ri 8r)[“+1(ru,):+1,2 - n+1(ru,)~-,,2] 

+ (1/26z)[“+l(U,);+r’2 - n+1(uv):-1’2]. (50) 

As for /3r in the previous iteration, the form for pij has been obtained by replacing 
the donor-cell difference form for Qij by a central difference form, but this replace- 
ment must not be made in Eq. (49), which requires the full form of Qj obtained 
from Eq. (21) through replacing n + 1 time densities by tilde-level densities. As 
in the previous iteration, convergence is reckoned by sufficient smallness of the 
iterative changes, according to whatever criterion of accuracy may be desired. 

This completes the derivations necessary to specify a computational cycle. 
Arrangement of these into a computer code involves numerous additional details 
[12] not presented here. 

EXTENSIONS TO THE BASIC METHODOLOGY 

Two extensions are described in this section, one to allow for the piling up of 
incompressible fluid into a region fed by the impinging droplets creating a variable 
boundary position and the other to permit the exchange of mass between fields 
as, for example, from phase transitions. 

The criterion for incompressible pileup is based on the local magnitude of ~9. 
When 0 decreases below a preassigned critical value in any computational cell, 
it is assumed that the droplets have reached a close-packed state, and any further 
compression is not allowed. For droplets representing an incompressible liquid, 
the critical value of 0 is very small; 0.01 has proved convenient in test problems, 
with the dynamics of the small vapor residuum being frozen into that of the fluid. 
For chunks or particles, the critical value of 6’ may be somewhat larger, leaving 
appreciable vapor that retains some degree of mobility through the close-packed 
solid pieces. In this latter case two variants can be distinguished. In one, the solid 
particles coalesce to form a rigid structure, represented by setting the droplet 
velocity field to zero and calculating the interpenetrating vapor motion with almost 
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no change in form to our methodology. In the other, the close-packed solid particles 
retain a degree of looseness and move about as an incompressible field to which 
the vapor motion is not completely tied. This somewhat more complicated case 
requires a separate pressure variable for each field, one to maintain incom- 
pressibility in the droplet field of motion, the other to balance Darcy drag, inertial 
forces, etc., in the vapor field, which in either variant could just as easily be turned 
into a liquid with its own incompressibility. 

Of particular interest for our present purposes has been the case of close pileup 
of an incompressible liquid with variable boundary position, distinguished on 
the basis of a very small residual value of eij. In this case the changes to accomodate 
such a possibility are easily incorporated as follows. 

For every computational cell with 13ij exceeding the critical value, the technique 
remains unchanged. For those in which 0( is less than the critical value, there are 
several modifications to be made. 

(1). The definition of Dii for all purposes is changed to 

Dij = (l/ri 6r)[(~,r):+,,, - (z.q&,,] + (l/sz)[(a&+1’2 - (2&1’2]. (51) 

Thus, iteration to the point of vanishing DC for such cells ensures that V * ud = 0 
and the droplet field (not just the individual droplets) is completely incompressible. 

(2). The values of AJ and Kij are set to very large numbers, to tie any 
residual trapped vapor to the droplet field. 

(3). The expression for /&j, the pressure iteration coefficient, is vastly 
simplified to the form 

pii = (pi)! 6r2 6z2/[26t(6r2 + SZ2)]. (52) 

The result of these changes is to automatically ensure that the two velocity 
fields become exactly equal, to order (K,j)-“. As a result, the drag dissipation in the 
internal energy equation for the vapor becomes negligible, and indeed the residual 
trapped vapor becomes completely passive. If the region should again fragment, 
as signaled by eij exceeding the critical value, then the standard technique of the 
previous section is placed in effect again and the fields are free to resume 
penetration. 

The second extension discussed in this section is for the inclusion of mass 
exchange between fields. The most common example is that of a phase transition, 
in which, for example, evaporating liquid furnishes a source to the vapor field, 
building both number and size of the bubbles transported by and through the fluid. 
Another example is that of particulate burn, as in the propagation of a flame front 
through gunpowder. In the simplest versions of the former case, the rate of exchange 
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is such as to maintain local equilibrium between the vapor pressure (a function 
of temperature) and the local pressure in the fluid and vapor. In the burn example, 
the exchange must be initiated, and can thereafter be self-sustaining at a rate that 
depends on temperature. Both cases can be complicated by such matters as the 
effects of nucleation, depletion and nonequilibrium. A general description of all 
possibilities is beyond the scope of this present discussion. From the standpoint 
of precise formulation of the physical process, the task may be quite difficult. In 
many cases, however, the numerical solution can be accomplished by a relatively 
simple extension of the basic technique described in the previous section. 

Once the various S functions have been derived for the exchange process of 
interest, their incorporation into the equations can usually be accomplished 
by means of an explicit subroutine, essentially independent of the other parts of 
a calculation cycle. In some cases, however, the calculation is much improved 
by including the vapor density source in the definitions of D, Eq. (28) and Q, 
Eq. (21), so that these sources enter the implicit iteration procedure. 

(1). In each computational cell, mass is added to one field and subtracted 
from the other, and the densities are accordingly adjusted. Over-depletion 
can be precluded by implicitness for processes in which the rate depends on 
the residual amount of a quantity. 

(2). The field of rs values is adjusted to account for growth or decay of the 
size scale of the particles, droplets or bubbles. 

(3). In the cell-size volume surrounding each velocity point, mass exchange 
carries the velocity of the donor field, leading to a momentum exchange 
that leaves the donor-field velocity unchanged, but, through momentum 
mixing with the acceptor field, results in a change in velocity of the latter. 

(4). Mass exchange likewise carries the donor-field heat energy to the 
acceptor field. In addition, there are two other heat sources, one from 
momentum mixing, which converts kinetic energy to heat, and the other 
from the release or absorption of the latent heat of a phase transition or 
from an exothermic or endothermic reaction. 

These comments cover, in principle, the modifications necessary to incorporate 
a mass exchange subroutine. In practice, the calculation can be complicated in 
at least two respects. For one thing, the rate functions may depend with great 
sensitivity on the temperature, in which case the presence of small numerical 
fluctuations in that variable may have very large effects, magnifying to nonsense 
the small numerical inaccuracies that otherwise would be negligible. A second 
potential source of difficulty occurs when the exchange rate is extremely rapid, 
in which case the time step per cycle may have to be cut severely in order to resolve 
the process. These, however, are difficulties for which additional development in 
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numerical technology may be required in order to handle some of the more 
delicate circumstances that can arise. 

EXAMPLES OF TEST CALCULATIONS 

The calculation technique described in this paper has been tested in a variety 
of circumstances, several of which are described and illustrated here. The cal- 
culations were performed with the KACHINA code on a CDC-7600 computer. 

t=40.0 t=70.0 

FIG. 2a-e. Calculated results for a cloud of particles falling through vapor, plotted at four 
different stages in the process: (a) the configuration of marker particles, the dark ones droplets 
and the light ones vapor; (b) velocity vectors in the vapor field; (c) velocity vectors in the droplet 
field; (d) contours of vapor density; (e) contours of vapor internal energy. 
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Typical grind times (computer time in seconds per cycle per finite-difference cell) 
consistently varied in linear fashion with the number of iterations per cycle, 
extrapolating to 2.5 x 1O-4 set for no iterations and rising to 6.8 x 1O-4 set for 
ten iterations. A typical calculation may require only three to four iterations per 
cycle, sometimes rising appreciably higher, especially if there is some relatively 
violent transition in the dynamics, as, for example, when a blob of fluid first hits 
against a rigid wall. Computer-generated plots illustrate the results, summarizing 
in pictorial form the immense amount of numerical data that can be obtained from 
each run. These plots include velocity vectors for each field, contour patterns for 
most of the scalar field variables, and marker-particle configurations following 
the motion of fluid elements. These last play no computational role in the present 

t=30.0 

FIGURE 2b. (CONTINUED). 
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examples, but are of great value for the visualization of results. We have not added 
any retouching or other alterations to the computer-generated plots reproduced 
in this paper. 

The first calculations we performed were designed to test the accuracy of sound- 
signal propagation rate. In particular, we examined the motion of a rarefaction 
front into a region of mixed vapor and droplets, with various magnitudes of the 
drag function coupling the two fields. Theoretically, we expect the signal speed c 
to be proportional to the adiabatic sound speed in pure vapor c, , and also to 
depend on the void fraction 8, the ratio of material densities, s = pd/pu , the drag 
function K, and the frequency of the sound wave w. In general, the sound speed 
is complex, the imaginary part being related to the attenuation rate and to the 
growth of physical instabilities. 

) j 
l--L 

’ I 

I I J-L 

FIGURE 2c. (CONTINUED). 
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For JXwJ -+ 0, 

c2 = (c,“/se)[e(s - 1) + 11, (53) 

whereas for K/(wpV) + co, 

c2 = (c,2/e)[S(1 - 0) + Q-1. (54) 

In both these limits, the sound speed is real, and our tests show that the calculated 
rate of advancement of a rarefaction front matches the predicted rate for 
several circumstances investigated. 

The second set of tests were designed to match the equilibrium theory for a 

FIGURE 2d. (CONTINUED). 
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fluidized dust bed, which predicts that when the vapor speed through the bed is 
U, , the void fraction is given by 

w  - 0) = &NdPd - Pu>, (55) 

and the pressure gradient by 

wax = -m - 0) Pd + epu1. (56) 

Here g is the (positive) magnitude of the gravitational acceleration, and K can be 
a function of 0. Perturbation theory, however, indicates the existence of unstable 
modes, such that the introduction of small oscillations will be followed by an 

FIGURE 2e. (CONTINUED). 
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exponential growth of amplitude. Our test involved such a case, with the goal of 
observing the growth of an instability even in the absence of numerical (compu- 
tational) instability. We let the calculation introduce the perturbation through the 
use of varying degrees of coarseness for the iteration convergence criterion. For 
fine convergence, the numerical calculations held the equilibrium solution for 
hundreds of calculation cycles. Successively coarser convergence criteria resulted 
in stronger perturbations from equilibrium and earlier manifestation of the 
predicted instability. A useful extension of this study would examine the develop- 
ment and migration of bubbles in the bed, as described analytically by Murray [ 131 
and experimentally by Rowe and Partridge [14], from which comparisons could 
be made among the results of computation, analysis and experiments. At this stage 
of our testing, however, the only extension we have made to the dust-bed studies 
was accomplished by suddenly increasing the vapor speed and thereby exhausting 
the dust from the vessel. Our goal was to prove that the compressed slug of droplets 
and the following region of essentially pure driving vapor could both be calculated 
without difficulty. We learned that the expected results could be obtained only by 
inclusion of the initialization procedure for pressure described by the f function, 
which was required in order to account for the greatly differing magnitudes of 
sound speed in the slug and void regions. 

The third example discussed here is that of a region of droplets released at the 
axis of a vessel of vapor. The initial void fraction was great enough to allow the 
droplets to fall through the vapor, inducing a ring vortex in the latter but scarcely 
impeding the free fall of the former. In this case, our goal was to test the capability 
of the calculation for handling the pileup of droplets hitting the bottom of the 
vessel, with the resulting formation of a splashing puddle of incompressible fluid 
that forms when the void fraction goes to zero. The results are shown in Fig. 2, 
in which the cylindrical axis is at the left. Figure 2a illustrates the configurations 
of the marker particles representing droplets and vapor at a sequence of stages in 
the falling and splashing. Figures 2b and 2c show corresponding velocity vectors for 
the two fields. Apparent voids in the vapor at late times are low-density regions 
heated in the earlier stages by compression and dissipation, and subsequently 
expanding to give pressure equilibrium. Density and internal energy contour plots 
for the vapor, Figs. 2d and 2e, show the process more clearly than the marker 
particles, which are subject to some ambiguity of interpretation when their 
trajectories have covered large changes in radii. 

As a fourth example, we show the effects of sudden induced heating in the central 
part of a relatively complex initial configuration of materials. The initial conditions 
are sketched in Fig. 3a. A cylindrical vessel with axis at the left has a rigid bottom 
and side, and an open top. A liner of incompressible fluid (in this example, devoid 
of strength effects) surrounds three interior regions. The uppermost of these is 
essentially pure vapor. Below this are two regions of droplets, both with void 
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fraction 8 = 0.4, and both permeated with vapor. The inner of these is very hot, 
while the outer is cold, in pressure equilibrium with the liner material and the upper 
vapor region. The events that develop from this initial state are illustrated in 
Figs. 3b-3e, which show, respectively, the marker-particle configurations, the 
vapor field velocity vectors, the droplet field velocity vectors, and the contours of 
void fraction, each at a sequence of elapsed times. At first, the vapor escapes 
rapidly from the hot region, developing shocks ahead of its motion and dragging 
droplets behind. In the upper vapor region, the shock reflects from the massive 
incompressible liquid liner material. In the lower region, the shock propagates 
through the cool droplets, piling them against the liner and deforming the latter. 
Gradually the effects of gravity become apparent, as upthrust droplets fall back 
and the liner commences to slump. (The visual void above the liner material is not 
marked by particles, despite the fact that liner material is actually entering the 
region through the top boundary.) Eventually the whole mass of drops of both 
kinds has formed into a pair of incompressible fluids, of which ithe lighter liner 
material will gradually float on top of the heavier coalesced central droplet 
material. 

DISCUSSION 

Both the physical equations and the numerical methodology discussed in this 
paper are amenable to numerous possible modifications and extensions. This 
flexibility is ensured by the fact that the interaction functions, material property 

FIG. 3a-e. Calculated results for the explosion and settling of a complex system: (a) a sketch 
of the initial configuration; (b) sequence of marker particle plots showing vapor (light dots), 
the central droplets (heavy dots) and the liner droplets (the zeros); (c) the vapor field velocity 
vectors; (d) the droplet field velocity vectors; (e) the contours of void fraction 0. 

5807/r-4 
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descriptions, equation formulations, and similar features do not have to be written 
in any specific fashion dictated by the technique for solution. This is not to imply 
that numerical stability and accuracy are ensured for any conceivable innovation 
that the investigator may wish to insert; careful testing and comparison of results 
will always be required for this or any other numerical solution procedure. We 
believe that the principal reason for this degree of flexibility and generality is the 
strongly implicit coupling among the field variables, which removes many of the 
restrictions ordinarily encountered in the numerical solution of complicated 
fluid-flow problems. 

t=80.0 

FIGURE 3b. (CONTINUED). 
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Among the extensions that we plan to develop are many in which the interaction 
coefficients between fields will be generalized. Another type of extension is to 
three-field calculations, in which the third field represents a permeable structure 
with nonisotropic strength, which may soften during heating. For this purpose, 
strength can be represented by the simple process of holding the third field at rest 
until it softens, and by incorporating a strength-dependent nonisotropic drag 
between the third field and each of the others. More generally, the third field may 
be required to undergo elastic or plastic deformation, but this more complicated 
capability will require somewhat &ore development than the rigid-yield model. 

t-80.0 

FIGURE 3c. (CONTINUED). 
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In addition to these and other possible extensions, there is also the possibility 
for several areas of simplification. One of these is for the case in which both fields 
are microscopically incompressible. For programs of investigation with this feature, 
considerable computer-usage efficiency could be realized through the omission or 
simplification of terms and procedures. 

One especially useful conclusion from the development so far has been to clarify 
the distinction between numerical and physical instability in two-field flows. The 
differential equations are known to possess complex characteristics, and the linear 
stability analysis of these equations shows not only circumstances of complex 
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FIGURE 3d. (CONTINUED). 
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sound speed but also the existence of growing instability in many problems of 
physical interest [3]. At least two sources exist for these growing modes. One is 
the effect of the factors 0 and 1 - 0 modifying the pressure gradients, with results 
that amplify the tendency for particles to clump together when a homogeneous 
distribution is perturbed. The other arises from the dependence of K on 0, 
describing the collective effects of particulate clumping, from which increased 
drag enhances the process even further. 

It is important to recognize that although the highest wave-number perturbations 
are damped by dissipation (e.g. from viscosity), the remaining instabilities are 

t=o.o 

t=80.0 
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FIGURE 3e. (CONTINUED). 
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physically real, in contrast to the numerical instabilities that can arise in computer 
solutions. Although the linearized analysis of infinitesimal perturbations to the 
differential equations leads to predictions of unmitigated exponential growth, we 
know from more extended analysis [ 131 and experiments [ 141 that the growth of the 
perturbation is eventually bounded by nonlinear effects. 

Numerical solutions must be capable of representing these physical instabilities, 
and one of our examples has shown that the present technique possesses this 
capability. In general, the extent to which a given calculation will show such a 
development depends crucially on the relative time scales for perturbation growth 
on the one hand and for the completion of the macroscopic flow developments 
on the other. In our third example, the falling clump of particles hit the bottom 
of the vessel before the physically disruptive processes could work to distort the 
orderly droplet array. If the particles were released from much higher, the effects 
of true physical instabmty would be felt, and our first example shows that the 
numerical calculations would, indeed, exhibit this. 
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